

Table of Contents

1.	Introduction	. 2
2.	Objectives	. 2
3.	Target Faculty or faculty apprentice Participants	. 2
4.	Duration & Structure	. 2
5.	Month-Wise Training Plan with Embedded Skill Acquisition & Activities	. 2
	Phase 1: Industry Orientation & Problem Awareness (Months 1–3)	. 2
	Month 1: Foundations of Industry Readiness	. 3
	Month 2: Problem Identification & Articulation	. 3
	Month 3: Industry Connect & Exposure	. 4
	Phase 2: Innovation-Driven Teaching Practices (Months 4–6)	. 4
	Month 4: Teaching with Innovation Lens	
	Month 5: Applied Innovation & Case Study Analysis	. 5
	Month 6: Digital Tools & Tech-Enabled Teaching	. 5
	Phase 3: Practical Problem-Solving & Technology Readiness (Months 7–9)	. 6
	Month 7: Capturing Industry Problems for Students	. 6
	Month 8: Introduction to Technology Development	. 6
	Month 9: Technology Commercialization & IP Awareness	. 7
	Phase 4: Start-up Mindset, Mentoring & Integration (Months 10–12)	. 7
	Month 10: Start-up Lifecycle & Entrepreneurship	. 8
	Month 11: Student Innovation & Evaluation Methods	. 8
	Month 12: Capstone – Action Plan & Peer Review	. 8
6.	Skill Acquisition Snapshot Table	. 9
7.	Training Supervision1	10
8.	Resources Provided1	10
9.	Monitoring & Evaluation1	11
10	. Assessment Criteria Weightage (automatically calculated): 1	11
11	. Certification1	11
12	. Reporting & Compliance	12
Ke	v Benefits of Using INNOeVERSITY Digital Platform	12

12-Month Faculty Capacity-Building / Apprenticeship Program

1. Introduction

This structured Capacity-Building / Apprenticeship program aligns with NEP 2020 and the National Credit Framework. Its goal is to build confident faculty or faculty apprentice mentors who can integrate industry connect, innovation thinking, and problem-solving approaches into everyday teaching.

2. Objectives

- Familiarize faculty or faculty apprentice with real-world industry structures.
- Strengthen their ability to guide problem-centric student projects.
- Develop innovation, entrepreneurship, and research mentoring skills.
- Foster digital, hands-on, and value-creating teaching methods.

3. Target Faculty or faculty apprentice Participants

Open to faculty or faculty apprentice from any discipline who assist faculty in mentoring students for projects, research, or internships and want to strengthen their industry connect and innovation facilitation capacity.

4. Duration & Structure

- 12 months
- Monthly theme-based module, experiential task, and reflection tool.
- Outputs: lesson plans, problem statements, project logs, prototype ideas.

5. Month-Wise Training Plan with Embedded Skill Acquisition & Activities

Phase 1: Industry Orientation & Problem Awareness (Months 1–3)

Theme: Building foundational awareness of industry structure, sector dynamics, and real-world problem contexts.

Months Covered:

- Month 1: Foundations of Industry Readiness
- Month 2: Problem Identification & Articulation
- Month 3: Industry Connect & Exposure

Core Skills in this Phase:

- Mapping industry verticals and horizontals.
- Writing clear problem statements with real significance.
- Planning and executing meaningful industry exposure visits.
- Capturing insights to bridge classroom and field learning.

Month 1: Foundations of Industry Readiness

Objective: Familiarize faculty with real-world industry structures.

Topics: Verticals & Horizontals, Sector Mapping, Product vs Service Models.

Activity: Create an industry-aligned lesson plan for their subject.

Expected Output: Lesson plan + reflection notes.

Skilling Outcome:

Faculty can confidently describe industry verticals, horizontals, and sector structures, and develop lesson plans that align course content with real industry needs.

Month	Theme	Key Skills & Competencies Acquired	Core Activity / Output
1	Foundations of Industry Readiness	- Industry structure awareness- Sector mapping- Industry- aligned lesson design	Design and submit one industry-linked lesson plan with reflection

Month 2: Problem Identification & Articulation

Objective: Identify and define industry/community problems.

Topics: Good Problem Statement Elements, Categorization, Significance.

Activity: Draft 2–3 local industry or community problem statements.

Expected Output: Problem statement dossier.

Skilling Outcome:

Faculty can identify local industry/community problems, articulate clear and significant problem statements, and categorize them for student projects or research proposals.

Month	Theme	Key Skills & Competencies Acquired	Core Activity / Output
2	Problem Identification & Articulation	- Framing clear problem statements- Categorizing problems- Explaining significance	Draft and submit 2–3 real problem statements

Month 3: Industry Connect & Exposure

Objective: Connect classroom theory with industry realities.

Topics: Planning Industry Visits, Interaction Guides, Capturing Insights.

Activity: Participate in or plan an industry visit; submit reflection.

Expected Output: Visit report + insights captured.

Skilling Outcome:

Faculty can plan, conduct, and document effective industry visits, engage industry personnel meaningfully, and translate field insights into classroom examples.

Month	Theme	Key Skills & Competencies Acquired	Core Activity / Output
	Industry	- Industry visit planning-	Submit industry
3	Connect &	Interaction etiquette-	visit report with
	Exposure	Insight mapping	key learnings

Phase 2: Innovation-Driven Teaching Practices (Months 4-6)

Theme: Embedding design thinking, case-based learning, and digital tools to make teaching more creative, interdisciplinary, and tech-enabled.

Months Covered:

- Month 4: Teaching with Innovation Lens
- Month 5: Applied Innovation & Case Study Analysis
- Month 6: Digital Tools & Tech-Enabled Teaching

Core Skills in this Phase:

- Fostering a culture of creativity and student-led inquiry.
- Applying real-life innovation examples and lessons learned from success & failure.
- Confidently designing and delivering lessons using modern ed-tech tools.

Month 4: Teaching with Innovation Lens

Objective: Encourage creative and interdisciplinary teaching.

Topics: Innovation Types, Case-Based Learning, Design Thinking.

Activity: Create and implement a design thinking classroom task.

Expected Output: Task sheet + peer feedback.

Skilling Outcome:

Faculty integrate design thinking, case-based tasks, and interdisciplinary approaches into their teaching, making students more curious and creative.

Month	Theme	Key Skills & Competencies Acquired	Core Activity / Output
	Teaching with	- Design thinking skills-	Develop & share a
4	Innovation Lens	Case-based delivery-	student design
	illiovation Lens	Creative facilitation	thinking challenge

Month 5: Applied Innovation & Case Study Analysis

Objective: Apply innovation frameworks to real cases.

Topics: Innovation Pathways, Best Practices, Learning from Failures.

Activity: Analyse and present a local case study.

Expected Activity Output: Slide deck.

Skilling Outcome:

Faculty can analyse real-life innovation pathways and failures and use local industry case studies to make theory more relatable and practical.

Month	Theme	Key Skills & Competencies Acquired	Core Activity / Output
5	Applied Innovation & Case Study	- Case study analysis- Connecting theory to practice- Presentation skills	Analyse & present local industry/startup case study

Month 6: Digital Tools & Tech-Enabled Teaching

Objective: Strengthen tech-enabled teaching.

Topics: LMS Platforms, Online Quizzes, Visual Simulations.

Activity: Create one digital lesson plan with free tools.

Expected Output: Lesson recording/link.

Skilling Outcome:

Faculty develop confidence to design and deliver lessons using LMS, online quizzes, visual aids, and other free ed-tech tools for hybrid or remote learning.

Month	Theme	Key Skills & Competencies Acquired	Core Activity / Output
		- Using LMS & quizzes- Visual	Develop & share one online/hybrid lesson
		teaching tools- Digital lesson delivery	

Phase 3: Practical Problem-Solving & Technology Readiness (Months 7–9)

Theme: Enabling faculty to guide students in real industry problem-solving, early-stage prototype development, and commercial awareness.

Months Covered:

- Month 7: Capturing Industry Problems for Students
- Month 8: Introduction to Technology Development
- Month 9: Technology Commercialization & IP Awareness

Core Skills in this Phase:

- Using industry interviews and documentation to shape student projects.
- Mentoring early prototype ideas and feasibility checks.
- Understanding TRL levels, basic IP filing, and drafting simple commercialization pathways.

Month 7: Capturing Industry Problems for Students

Objective: Guide students in capturing industry problems.

Topics: Interview Techniques, Documentation, Converting Problems to Projects.

Activity: Mentor a student mini project on a real industry challenge.

Expected Output: Mini-project concept note.

Skilling Outcome:

Faculty can guide students to interact with local industry, capture pain points, and transform these into meaningful mini-projects or research problems.

Month	Theme	Key Skills & Competencies Acquired	Core Activity / Output
7	Capturing Industry Problems for Students	- Interviewing industry- Documenting pain points- Mentoring student solutions	Guide and submit student mini-project plan

Month 8: Introduction to Technology Development

Objective: Understand idea-to-prototype basics.

Topics: Prototyping, Feasibility, Testing Models.

Activity: Create a classroom prototype concept.

Expected Output: Prototype draft.

Skilling Outcome:

Faculty understand basic prototyping and feasibility checks and can help students visualize early-stage classroom solutions that can develop into tangible outcomes.

Month	Theme	Key Skills & Competencies Acquired	Core Activity / Output
	Introduction to	- Prototype design-	Draft & share
8	Technology	Feasibility checks-	classroom
	Development	Visualizing solutions	prototype concept

Month 9: Technology Commercialization & IP Awareness

Objective: Learn how to take ideas to market.

Topics: TRL Stages, IP Filing Basics, Market Fit.

Activity: Draft a short commercialization plan.

Expected Output: 2-page plan draft.

Skilling Outcome:

Faculty gain awareness of IP basics, TRL frameworks, and market-fit strategies, and can guide students on drafting simple commercialization ideas.

Month	Theme	Acquired	Core Activity / Output
9	Commercialization &	- Understanding TRLs- Basics of IP- Commercialization pathways	Draft commercialization plan for student idea

Phase 4: Start-up Mindset, Mentoring & Integration (Months 10–12)

Theme: Strengthening faculty capacity to support student entrepreneurship, assess innovation, and integrate learning into a personal teaching action plan.

Months Covered:

- Month 10: Start-up Lifecycle & Entrepreneurship
- Month 11: Student Innovation & Evaluation Methods
- Month 12: Capstone Action Plan & Peer Review

Core Skills in this Phase:

Using Lean Canvas to guide student start-ups.

Objectively evaluating innovation-driven student projects using rubrics.

Month 10: Start-up Lifecycle & Entrepreneurship

Objective: Mentor student start-ups.

Topics: Ideation to Exit, Validation, Early Startup Challenges.

Activity: Guide a student startup using Lean Canvas.

Expected Output: Completed Lean Canvas draft.

Skilling Outcome:

Faculty can mentor students through ideation, early validation, and the startup life cycle using tools like the Lean Canvas.

Month	Theme		Core Activity / Output
	Start-up Lifecycle & Entrepreneurship	- Startup model awareness-	Guide & submit Lean
10		Lean Canvas use- Early	Canvas for student
	Linepieneursnip	mentoring skills	startup

Month 11: Student Innovation & Evaluation Methods

Objective: Evaluate innovation-driven student work.

Topics: Innovation Rubrics, Portfolio Assessment.

Activity: Use an innovation rubric to assess student work.

Expected Output: Filled rubric + reflection.

Skilling Outcome:

Faculty can use rubrics and portfolio assessments to evaluate student innovation projects fairly and provide constructive, actionable feedback.

Month	Theme		Core Activity / Output
	Student	- Rubric design- Innovation	Evaluate & submit
11	Innovation &	assessment- Giving constructive	rubric for student
	Evaluation	feedback	project

Month 12: Capstone - Action Plan & Peer Review

Objective: Prepare integration strategy & share learnings.

Topics: Action Planning, Peer Feedback, Institutional Impact.

Activity: Present "My Innovation-Integrated Teaching Plan."

Expected Output: 3–5-page personal plan.

Skilling Outcome:

Faculty can consolidate their year-long learning into a practical action plan, participate in peer reviews, and become confident champions of innovation-driven, industry-linked teaching.

Month	Theme	Key Skills & Competencies Acquired	Core Activity / Output
ll12	Capstone &	- Consolidating learnings- Peer	Present & submit final
	Peer Review	evaluation- Institutional strategy	personal action plan

Monitoring & Certification

- Monthly deliverables must be uploaded on the digital workspace for evaluation by certified empanelled industry mentors.
- Reflection journals entries / e-logbook.
- Final capstone submission under digital workspace is mandatory for certification.

6. Skill Acquisition Snapshot Table

Month	Theme	Key Skills & Competencies Acquired	
1	Foundations of Industry	Industry structure awareness, vertical/horizontal	
	Readiness	mapping, industry-aligned lesson design	
2	Problem Identification &	Writing clear problem statements,	
	Articulation	categorization, real-world problem relevance	
3	Industry Connect &	Visit planning, industry interaction, insight	
	Exposure	capturing, reflection	
4	Teaching with Innovation	Design thinking, interdisciplinary task design,	
	Lens	creativity facilitation	
5	Applied Innovation & Case	Case study analysis, connecting theory to	
	Study	practice, best practice benchmarking	
6	Digital Tools & Tech-Enabled	LMS use, quiz creation, visual tools, digital lesson	
	Teaching	design	
7	Capturing Industry Problems	Interviewing industry, problem-to-project	
	for Students	translation, student mentoring	
8	Introduction to Technology	Ideation, prototyping basics, feasibility thinking	
	Development		
0	Technology	IP basics, TRL framework, drafting	
9	Commercialization & IP	commercialization paths	
10	Start-up Lifecycle &	Startup stages, lean canvas, student startup	
	Entrepreneurship	mentoring	

Month	Theme	Key Skills & Competencies Acquired
11		Innovation rubrics, portfolio assessment, constructive feedback
12	Capstone & Peer Review	Integration strategy, peer evaluation, presenting impact plans

7. Training Supervision

A designated **Training Officer** at each constituent institution will:

- Guide and monitor apprentices via the INNOeVERSITY Digital Dashboard, ensuring each apprentice's journey is mapped and updated in real time.
- Maintain digital logbooks and automated monthly attendance records, accessible to the apprentice, Training Officer, and institutional head.
- Provide quarterly feedback reports through structured digital feedback forms.
- Organize online or hybrid review meetings, using video recording and digital signoffs.
- Facilitate end-of-training evaluation, all documented within the ecosystem for easy audit.

Value Add: The INNOeVERSITY platform generates digital reminders, tracks pending tasks, and ensures accountability for every stakeholder.

8. Resources Provided

Through the INNOeVERSITY digital platform, each apprentice will have secure access to:

- The **Apprenticeship Training Manual** (e-book or downloadable PDF).
- Daily **Digital Logbook and Work Plan Templates** on INNOeVERSITY workspace.
- Editable Sample Documents (file notes, drafts, compliance registers).
- Institutional Workflow Diagrams to understand real workplace operations.
- A digital Certificate of Completion, auto-generated and BOAT/NATS-compliant, once all requirements are met.
- Dedicated group supported by mentors to resolve day to day queries.

Value Add: All resources are accessible on mobile, ensuring apprentices can update logs, download templates, and refer to guidelines anytime.

9. Monitoring & Evaluation

Monthly Tracking:

- Attendance and daily logbook entries verified and digitally signed / approved by the Reporting Officer through the INNOeVERSITY dashboard.
- Automatic alerts if entries or approvals are pending.

Quarterly Review:

- Oral or written feedback by section heads recorded in the system.
- Upload of observational notes on skill application and communication.
- Mentors can attach audio or video clips if needed.

Final Evaluation:

- Practical skill test tasks assigned via the platform.
- Scenario-based tasks uploaded by apprentices, evaluated with digital rubrics.
- Final feedback on conduct, responsibility, and growth captured and archived.
- Internal marksheets securely stored accessible only to authorized reviewers.

10. Assessment Criteria Weightage (automatically calculated):

Criteria	Weightage
Attendance & Punctuality	20%
Skill Proficiency	40%
Communication & Teamwork	20%
Final Task & Report	20%

Value Add: The system produces performance dashboards for each apprentice, helping mentors make evidence-based decisions.

11. Certification

- Upon successful completion, the platform automatically generates a **Training Completion Certificate**, jointly digitally signed by:
 - Head of the Institution
 - Training Officer
- Certification is integrated with the BOAT/NATS norms and uploaded to the NATS portal for validation via INNOeVERSITY's secure API integration.

Value Add: Apprentices can download verified certificates and share them with future employers without delays.

12. Reporting & Compliance

- All documentation including attendance, logbooks, quarterly feedback, and evaluation forms — is maintained securely on the INNOeVERSITY platform with role-based access.
- Training Officers generate and submit **Quarterly Status Reports** through the platform to the HBSU NATS Cell.
- Final **Completion Report** and apprentice certificate list are auto-compiled for submission to BOAT (Western Region) via the NATS portal.
- An audit trail log ensures full compliance with BOAT/NATS requirements.

Value Add: Real-time dashboards make status tracking transparent for institutes, students, and regulators, reducing paperwork and improving reporting accuracy.

Key Benefits of Using INNOeVERSITY Digital Platform

- 24x7 access for apprentices, mentors, and institutions.
- Improved accountability with digital logs and auto-reminders.
- Seamless compliance with NATS/BOAT guidelines.
- Centralized record-keeping for audits.
- Better learning outcomes with clear tracking and feedback.